QuadraticOutputSystems.QuadraticOutputStateSpace
ControlSystemsBase.gram
ControlSystemsBase.grampd
ControlSystemsBase.lsim
LinearAlgebra.norm
QuadraticOutputSystems.h2inner
QuadraticOutputSystems.qoss
QuadraticOutputSystems.QuadraticOutputStateSpace
— TypeQuadraticOutputStateSpace{T}
An object representing a quadratic output state space system.
dx(t)/dt = Ax(t) + Bu(t)
y(t) = Cx(t) + M(x(t)⊗x(t))
See the function qoss
for a user facing constructor.
Fields:
A::Matrix{T}
B::Matrix{T}
C::Matrix{T}
M::Matrix{T}
ControlSystemsBase.gram
— MethodX = gram(Σqo::QuadraticOutputStateSpace, opt::Symbol; kwargs...)
Returns the Gramian of system Σqo
. If opt
is :c
the controllability Gramian is computed. If opt
is :o
the observability Gramian is computed.
ControlSystemsBase.grampd
— MethodL = grampd(Σqo::QuadraticOutputStateSpace, opt::Symbol; kwargs...)
Returns a Cholesky factor L
of the Gramian of system Σqo
. If opt
is :c
, the controllability Gramian P=L'*L
is computed. If opt
is :o
the observability Gramian Q=L*L'
is computed.
ControlSystemsBase.lsim
— Methodresult = lsim(Σqo, u, t; kwargs...)
Calculate the time response of the quadratic output state-space model Σqo::QuadraticOutputStateSpace{T}
by first treating it as standard state-space model and calling ControlSystems.lsim
on it, and then calculating the quadratic part of the output and add it to the linear par.
LinearAlgebra.norm
— Functionnorm(Σqo, p=2; kwargs...)
h2norm(Σqo; kwargs...)
Computes the H2 norm of the quadratic output state-space model Σqo::QuadraticOutputStateSpace
.
QuadraticOutputSystems.h2inner
— Functionh2inner(Σ1, Σ2)
Computes the H2 inner product of the quadratic output state-space models Σ1::QuadraticOutputStateSpace
and Σ2::QuadraticOutputStateSpace
.
QuadraticOutputSystems.qoss
— MethodΣqo = qoss(A, B, C, M)
Σqo = qoss(A, B, M)
Creates a quadratic output state-space model Σqo::QuadraticOutputStateSpace{T}
with matrix element type T
.